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Abstract A network worm is a specific type of malicious
software that self propagates by exploiting application vul-
nerabilities in network-connected systems. Worm propaga-
tion models are mathematical models that attempt to capture
the propagation dynamics of scanning worms as a means
to understand their behaviour. It turns out that the emerged
scalability in worm propagation plays an important role in
order to describe the propagation in a realistic way. On the
other hand human-based countermeasures also drastically af-
fect the propagation in time and space. This work elaborates
on a recent propagation model (Avlonitis et al. in J Com-
put Virol 3, 87-92, 2007) that makes use of Partial Diffe-
rential Equations in order to treat correctly scalability and
non-uniform behaviour (e.g., local preference worms). The
aforementioned gradient model is extended in order to take
into account human-based countermeasures that influence
the propagation of local-preference worms in the Internet.
Certain aspects of scalability emerged in random and local
preference strategies are also discussed by means of random
field considerations. As a result the size of a critical network
that needs to be studied in order to describe the global propa-
gation of a scanning worm is estimated. Finally, we present
simulation results that validate the proposed analytical results
and demonstrate the higher propagation rate of local prefe-
rence worms compared with random scanning worms.

M. Avlonitis - E. Magkos (&) - M. Stefanidakis - V. Chrissikopoulos
Department of Informatics, Ionian University,

Plateia Tsirigoti 7, 49100 Kerkyra, Greece

e-mail: emagos @ionio.gr

M. Avlonitis

e-mail: avlon@ionio.gr

M. Stefanidakis

e-mail: mistral @ionio.gr

V. Chrissikopoulos
e-mail: vchris@ionio.gr

1 Introduction

A network worm is a specific type of malicious software
that self propagates by exploiting application vulnerabilities
in network-connected systems. During recent years, seve-
ral worms have caused significant damage in corporate and
Internet core networks [2—6]. While early worms followed
rather random spread patterns and aimed mostly at Denial of
Service attacks, future worms are expected to adopt advan-
ced scanning strategies and even bear a catastrophic payload
[7-10]. A fast spreading worm armed with a priori informa-
tion about the distribution of vulnerable nodes in the under-
lying infrastructure [10] may also perform targeted attacks
and bring down the majority of the target networks within a
short time interval. Securing networks against worm attacks
is particularly important for critical infrastructure applica-
tions, such as banking and financial applications, emergency
deployment services and military applications.

Among the various strategies that worms can follow for
scanning vulnerable hosts [7,11] two strategies have been
primarily considered: a) random scanning worms (e.g., Code
Red I [3], Slammer [4]) uniformly scan the 32-bit IP address
space to find and infect vulnerable targets; b) local preference
worms (e.g., Blaster [5], Coder Red I1 [3], Nimda [2]) prefera-
bly infect “neighbouring” hosts (e.g., within a specific /8, /16
or /24 address block) within a network. It has been shown that
local preference worms spread faster, compared to random
scanning worms, when the vulnerable hosts in the Internet
are unevenly distributed, which is a realistic assumption [10].
Such network-aware worms tend to infect clusters of nodes,
often with similar application vulnerabilities, before moving
to other networks. It is also expected that in the future, when
the IPv6 will be a reality, local preference may be an opti-
mal scanning strategy for worms, given the infeasibility of
randomly scanning the entire 128-bit address space [12].
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From a security point of view, most traditional techniques
for controlling worm intrusions involve human intervention
and are mainly preventive (e.g., firewall policies and network
perimeter, patch strategies, network segmentation, updating
virus scanners, removing hosts from the network), aiming at
reducing the risk of infection from a scanning worm. Some
of these could also be seen as reactive measures that aim to
reduce the exposure of a network to an already active worm.
Recently, much attention has also been shed on detection
measures with automated real-time monitoring. Detection
strategies can also be categorized into local and global strate-
gies. For example, Intrusion Detection Systems (IDS) can be
used to detect traffic anomalies in the internal network
[13—15]. While such local monitoring strategies can be ef-
fective in early detecting and raise threshold alarms within
an organization, they may not be able to capture the global
behaviour of a worm in the Internet, due to the heterogeneity
of the various local networks. On the other hand, a global
monitoring strategy often uses a centrally controlled Internet
infrastructure which gathers log data from geographically
distributed systems. Such strategies make use of highly dis-
tributed network telescopes or honeypots to attract and iden-
tify attackers [16]. Admittedly it also seems difficult to setup
global monitoring infrastructures that require a very large
monitored network to become effective [13].

Worm propagation models are epidemiological models
that capture the propagation dynamics of scanning worms
as a means to understand the behaviour of various worm
types. Studying the behaviour of a scanning worm can also
help towards designing and evaluating strategies for monito-
ring and early detection, as well as predicting the time limits
for early response. While it seems hard to create realistic
models mainly due to the heterogeneity of the Internet net-
works, recent analytical models (e.g., [7,17]) have been vali-
dated with simulation results that approximate the behaviour
of random scanning worms such as the Code Red and Slam-
mer worms, for which real measurements are disposable on
the Internet. Worm propagation models extend the classical
epidemiological model [18] to describe the behaviour of a
worm. The first complete application of mathematical mo-
dels to computer virus propagation was proposed in [19].
Traditionally, propagation models are given names according
to the possible states of the host population. For example, the
simple epidemic model in [7] is a SI (Susceptible-Infected)
model which describes random scanning worms that peak
before a remedy is deployed. This model was extended in
[17] to include hosts that are Recovered (i.e., a SIR model)
for example as aresult of installing a patch or a virus scanner.
The work in [11] also modelled local preference worms fol-
lowing the SI approach. In another example, a model where
susceptible hosts can become infected and then go back to a
susceptible state (e.g., as a result of resetting a system where
the propagation code resides in the main memory), is cal-
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led a SIS model [16]. Other models take into account the
fact that nodes can be isolated (e.g., powered down or qua-
rantined) in an attempt to mitigate the worm propagation
(e.g., [20]). Furthermore, there are models that attempt to
take into account various non-uniformities of the underlying
networks: for example, worm propagation may be influenced
by bandwidth variations and congestion [16,21,22] or by the
non-uniform behaviour of the worm itself (e.g., a worm with
varying scan rate) [14].

To the best of our knowledge, most worm propagation
models found in the literature make use of Ordinary Diffe-
rential Equations (ODE) to describe the phenomenon. Un-
fortunately, results based on ODEs do not describe the spatial
behaviour of the worm propagation phenomena, and thus do
not properly address scalability issues (e.g., an ODE model
will fail to tell how infected a specific area in space becomes).
In a recent model proposed in [1] the classical model was
extended by incorporating spatial interactions between and
within networks and an evolution equation for worm propa-
gation into an arbitrary subnet was proposed. According to
the formalism, the notion of a critical network size (herei-
nafter called a critical network) was also introduced. It was
suggested that the worm propagation within such a critical
network may be considered in order to predict the global pro-
pagation of the worm in the Internet. The formalism can take
into account non-uniformities that are due either to local
interactions between neighbouring subnets (e.g., as aresult of
alocal preference strategy) or to the heterogeneity of the un-
derlying infrastructure, (e.g., bandwidth variations, different
topologies, human countermeasures etc.).

Our Contribution. In this work we elaborate on the
recent gradient model of [1] by introducing an appropriate
new term which models human intervention (i.e., preventive
and/or reactive measures that mitigate the worm propaga-
tion), thus better approximating the real-world behaviour of
scanning worms and of the host population in the Internet.
Furthermore, we study the dynamics of the new model and
give an emphasis to explaining the higher propagation rates
of local-preference worm strategies (as observed in real mea-
surements), compared with the propagation rates of random
scanning worms. Moreover, the powerfulness of gradient
models to describe scalability of worm propagation in terms
of spatiotemporal interactions between infected hosts, is
demonstrated. It is claimed that the gradient models point
towards a theory of scalability which is missing from the
literature on worm propagation. Finally, we make use of
random field considerations in order to estimate the size of a
critical network, which needs to be studied in order to des-
cribe the global propagation of a scanning worm. Throughout
the paper, we validate our estimates and analytical results
with simulation outcomes.

Organization of the paper. In Sect. 2 we briefly
present the results of the approach in [1]. In Sect. 3 we make
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random field considerations to estimate the size of the critical
network. In Sect. 4 we present a new model that incorporates
human intervention in the model of [1], and analytically solve
our equations. In Sect. 5 we present simulation results that
validate our theoretical estimates, while Sect. 6 concludes
the paper.

2 A brief review of the gradient model

This section briefly describes the model proposed in [1]. Let
N; be the number of susceptible hosts in the i-th subnet and
I; the infected hosts in the same subnet. Suppose that K is
the average propagation speed of the worm and in a first
approximation let us say that it is constant in every single
subnet. Assuming a random scanning strategy, there is a pro-
bability P;y that a host inside the subnet targets a host inside
the same subnet and a probability Poyr that instead it at-
tacks another subnet. Following the line of [1], starting from
a continuous evolution equation of the form,

da(x,t) & _
— =K —an) [/a(y, t)dy} (M

and using a Taylor expansion around x (y = x + r), we end
up with a spatial generalization of the simple epidemic model
(in order to capture interactions between subnets either due
to Internet non-uniformities or due to non-uniform scanning
strategies)

d da 1,02
ﬂ—K—(l—aX)/(aX+r—X+§r2 aX)dr
Ux

V2
(2
where ay = a(x,t) is the fraction of the infected hosts,
n = Nroar/Ns is the number of subnets in the Internet

which has a total of N7, susceptible hosts and N is the
size of the subnets.

Assuming a uniform scanning strategy and a homoge-
neous network infrastructure, the number of infected hosts
uniformly increases within the Internet. As a result a uniform
spatial distribution emerges and the spatial partial derivatives
in Eq. (2) vanish. In this scenario the following evolution
equations were derived,

da

th = Kax(1 — ax) 3)
da
— =Ka(l—a) “4)

where a = (1/Nrotal) fn Nsaxdr is the total or average
density of infected hosts in the Internet.

Comparing Egs. (3) and (4) it is clear that when no non-
uniformities are present, the average behaviour of a worm
population in the Internet coincides with its behaviour in any

network of arbitrary size (the smallest size limited to scales
where discrete behaviour is not present).

When a local preference scanning strategy is assumed,
there is a uniform probability to scan addresses in the same
“/m” prefix network. As a result a non-uniform distribution
of infected hosts emerges and the spatial derivatives in Eq. (2)
are no longer negligible. The following evolution equation

holds,
ax
2

&)

da
d—t" = N,(1 —ay)

192
[B'+(©Q—1B"]ax +B'c 5

where 8 = n/ Qis called the pairwise rate of infection (7 is an
average scan rate and €2 is the total number of IP addresses),
B’ and B” are pairwise rates of infection in local and remote
scan respectively (8" = pn/23™™ " = (1 — p)n/(Q —
1)232=™ where Q is the number of “/m” prefix networks in
Q) and ¢ = (1/2) th r2dr. Eq. (5) provides a specific law
of worm propagation for a local preference scanning strategy
taking into account the resulting heterogeneities.

Our formalism introduces as a crucial model parameter,
the gradient coefficient ¢ which is a measure of the size of
the critical network, i.e., a representative neighbourhood of
subnets. This means that in a neighbourhood of this scale the
worm population proceeds independently. As a result, the
evolution of the worm population within the critical network
coincides with the evolution of the population in the Internet
as a whole. In Sect. 3 we use random field considerations to
provide an estimate on the critical network size. Furthermore,
while the spatial model proposed by [1] is able to take into
account and model interactions between infected hosts, thus
introducing the notion and existence of a critical network, no
effort has been given to incorporate a number of factors that
influence the propagation of a worm in the Internet, such as
human intervention, e.g., preventive and reactive measures
against scanning worms. In Sect. 4 we will incorporate such
human-based actions in order to achieve a more realistic un-
derstanding of local preference worm propagation strategies
in the Internet.

3 Random field considerations

It is well known that either in physical or in artificial sys-
tems, complex dynamics may emerge due to multiple or long
range interactions. As a result, complex structures are deve-
loped and a variety of critical phenomena may arise. In this
context, worm propagation in the Internet may be viewed as
an artificial dynamic system the evolution of which could be
affected by random and/or scale effects.

In order to examine these dynamics and especially the
spatial behaviour of worm propagation in the Internet, we
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may apply well established tools of statistical methods from
other fields. The connection with the formalism proposed
in [1] is based on the underlying idea that it is possible to
describe the average worm behaviour in a deterministic way,
by considering a critical scale of network size. In this critical
scale, it is possible to write down an evolution equation (e.g.,
Eq. (5)) where the random effects in scales below that size
(e.g., in smaller subnets), can be taken into account with the
introduction of the appropriate gradient terms. At this point,
a crucial question arises, i.e., whether there is such a scale or
an hierarchy of scales emerges.

In the context of probability theory the above question
can be treated with the notion of moving averages [23] and
the existence or not of the corresponding correlation length.
From a stationary random process r(x) with mean 7 and
variance s> a family of moving average processes 7 (x) may
be obtained as

1 x+T/2
rr(x) = —/ r(x)dx 6)
T J-1)2

where T denotes the averaging “window” in space. We
define the variance function y (T) = s% / s2 as the ratio of the
variances of the resulting average pattern (after smoothing
with average window T') over the original one. Then for a
general class of processes the following relation holds (m is
a pattern parameter and A is the corresponding correlation
length of the pattern)

A —1/m
y(T) = [1 + (?)m} )

or for fractal patterns (b is a parameter correlated to the fractal
dimension)

y(T) o< T7° (8)

Asaresult given the spatial pattern of worm propagation in
the Internet (this consists of a sequence of 0’s for non infected
hosts and 1’s for infected hosts) we can estimate pattern data
points using the definition y(T) = s% /s2. Plotting these
points and fitting the curve of Eqs. (7, 8) we may estimate
the curve parameters A, m or b. This procedure is depicted in
Fig. 1 for random scanning and Fig. 2 for local preference,
where the spatial pattern was taken from simulation results.
Solid curves in both figures represent a power law behaviour.
It is evident that in the case of random scanning the resulting
worm propagation pattern over the Internet is a fractal and, as
also predicted in [1], the evolution of the worm population in
any size of selected subnets (the only limitation is to be large
enough so that the phenomenon is not discrete) coincides
with the evolution of the worm population in the Internet.
On the other hand, in case of a local preference strategy this
result breaks down. Indeed, as can be seen in Fig. 2 the power
law behaviour does not fit correctly the simulation data. In
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this case, exponential-like variance functions of the form of
Eq. (7) are more appropriate.

This result is an evidence for the existence of a correla-
tion length of the worm pattern in the Internet. In probability
theory this defines a critical scale of fluctuations which coin-
cides with the critical network size in our analysis. Below
that scale worm propagation is affected by the interactions
from neighbouring hosts while for scales above the critical
one, worm propagation proceeds independently. Again these
findings confirm the results suggested in [1].

Note that our simulation for local preference was based
on a Blaster-like worm, where the worm targeted neighbou-
ring nodes with 60% probability, while performing random
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Fig. 1 Estimated variance function for random scanning
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Fig. 2 Estimated variance function for local preference scanning
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scanning with a probability of 40%. This means that the
resulting pattern consists of the interplay of two evolution
dynamics. In a first approximation, fitting the simulation data
in Fig. 2, our analysis demonstrates the existence of a corr-
elation length of the order of 170 for local preference.
Taking into account that there is a linear relation between
this correlation length and the size of the critical network
(the coefficient being of the order of four) a value of 700
hosts is finally estimated as the size of the critical network.
Given the limitations of our approach, the values of the size
of a critical network are of great significance. The knowledge
of such values could be used to fill the gap between local and
global monitoring strategies so that a representative neigh-
borhood of subnets could be used in order to study the global
behaviour of a worm in an effective and affordable way.

4 Incorporating human intervention in worm
propagation

In order to take into account human intervention in local
preference scan strategies in the initial model proposed in
Eq. (5) it is necessary to introduce an appropriate loss term.
The following gradient model is proposed,

day 792aX

ar K'ax(1 —ax) — glax) + '(ax) ¥x2 ®

where the abbreviations for therate K’ = Ng[B'+(Q—1)B"]
and the gradient coefficient ¢’(ayx) = B'Ns(l — ax)c was
used while the new term g(ay) models human intervention.
The following analytical form for g(ax) is adopted,

2

glax) = g (10)

X
g3 +ay
where g1.g> are appropriate constants. This kind of loss term
was previously used in other fields in order to model popula-
tion dynamics (e.g., [24]). The following properties hold: for
early spread, i.e., foray — 0, g(ay) =~ ag( which is equiva-
lent to say that initially the reduction of infected hosts is very
low, while near saturationay — 1, g(ayx) =~ g1, i.e., the rate
of reduction of infected hosts reaches a high constant rate at
a specific time after the release of the worm. This kind of
behaviour is appropriate for worm spreading problems since
in the real word, not too many hosts are initially aware of the
presence of a new worm and as a result little effort is paid
to mitigating its propagation. On the contrary, in the course
of time more and more hosts are aware of the worm sprea-
ding and appropriate actions (both preventive and reactive)
usually take place.

In order to evaluate the role of the proposed model in
Eq. (10), and especially the role of the gradient term (which
models local preference worm strategies) in the worm’s pro-
pagation rate, the two versions of Eq. (10) with and without
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Fig. 3 Approximating analytical results of the gradient model with a
loss term

the gradient term, are considered. Furthermore, it is assumed
that initially a more or less uniform distribution of nuclei
of infected hosts emerge in the network (this is equivalent
to assuming a quite common spatial solution of the form
ax(x) = [Bcosh(x/A)]~2 emerges independently in each
critical network, see for example in [25]). For this scenario
and for the initial time states (i.e., foray — 0, g(ay) =~ a%)
of worm spreading, the time derivatives of Eq. (10) with and
without the gradient term are depicted in Fig. 3, for arbitrary
model parameters.

It can be seen that when a random scanning strategy is
adopted then the corresponding model without the gradient
term shows a low overall propagation rate while for a lo-
cal preference strategy the corresponding model with the
gradient term shows a higher overall propagation rate. As
a consequence, the depicted analytical results confirm real
measurements for local preference worms, which report fas-
ter propagation rates compared with random scanning worms.
Moreover, recalling that ¢’(ax) = B'Ns(1 —ax)c, the stron-
ger the local preference behaviour the higher contribution of
the gradient term e. g., the faster propagation rate as depicted
with the dashed curves in Fig. 3.

Furthermore, the analytical results depicted in Fig. 3, show
that the dynamic without the gradient term (e.g., random
scanning) reaches amaximum number of infected hosts NX
which is considerably lower than that reached when the gra-
dient term enters the dynamics, NEP! or NEP2 (local pre-
ference strategy). Thus, another outcome of the proposed
model is that a local preference strategy not only obtains
higher propagation rate but also results in much higher da-
mage in the network.

However, as one of the main results of the present work, it
is noted that human intervention during worm spreading can
be modelled and quantified in the framework of the propo-
sed model by means of only three model parameters, mainly
g1, &2, Ns. This is not always an easy task and appropriate
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values can be estimated only by calibrating model behaviour
with real data. The powerfulness of the new model is that
the calibration can be done at the beginning of worm pro-
pagation. As a result it may be possible to predict on time
the future behaviour of the worm. For a robust calibration
one should note that the new introduced term g(ay) captures
healing of hosts that return, for some reason, to a suscep-
tible state (i.e., hosts that follow the SIS model). In order
to incorporate other preventive and/or reactive countermea-
sures (e.g., firewall policies, patch strategies, updating virus
scanners or removing hosts from the network), a dynamic
reduction of the size Ng of the susceptible hosts in Eq. (10)
must be considered.

5 Exploring scalability in local preference strategies

As pointed out earlier, the so called gradient model for local
preference worm strategies is able to capture the spatial be-
haviour of spreading worms. This can be done by means of a
characteristic length entering to the corresponding gradient
coefficient. The origin of this characteristic length relies on
the interactions between hosts and determines the size of the
critical network. Note that the smaller the gradient coefficient
the smaller the characteristic length, e.g., the smaller the size
of the critical network. Once more here it is emphasized that
the existence of a critical network guaranties that an obser-
vation of the worm propagation within the critical network
may lead to a robust measure of the worm propagation in
the entire network. As a result, in the framework of gradient
models there is the possibility to address scalability analy-
tically and further it is possible to measure (and quantify)
the effect of the critical network size to worm propagation
behaviour.

Under this interpretation, the proposed model in this work
suggests that during worm propagation the characteristic
length of the dynamics of the system changes since ¢’(ay) =
B’'Ns(1 — ax)c is a function of ay. Furthermore, the model
predicts that initially a critical network for robust monito-
ring of worm propagation has a maximum size (since ¢’ (ax)
is maximum for axy — 0) and in the course of time this
decreases and finally for axy — 1 the spreading behaviour
coincides with a random scan strategy. This is an unexpected
result and it is demonstrated later in this section by means of
simulation results. Intuitively this can be understood since,
in local preference scanning strategies, initially the density
of infected hosts proceeds heterogeneously, while as the net-
work goes to saturation the density of infected hosts tends
to be homogeneous, e.g., at any subnet it is almost equal to
unity.

In order to verify the predictions of the proposed
model presented in the previous and current sections, a simple
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Fig. 4 Infection density in arbitrary probing subnets compared to glo-
bal density

discrete event simulator has been built. This setup is equiva-
lent to a /16 network, describing a total number of 256 LAN
clusters with each LAN having 256 hosts. All hosts are ini-
tially susceptible to worm infection and a single host in an
arbitrary LAN is in infected state. The simulated worm per-
forms 1 infection probe per time unit, something that leads
to a rough correspondence of 1 ms per time step. Connec-
tion establishment delays are disregarded, as a UDP packet
scanning method is assumed to be used. The simulator dis-
tinguishes between two types of probe propagation delays:
10 time units for intra-LAN and 100 time units for inter-LAN
infection propagation.

In the first phase of simulation, a local preference strategy
for address scanning was selected. No human countermea-
sures were accounted for, enabling thus the isolation and vali-
dation of the gradient term of the model-theoretical analysis.
Probing subnets of various sizes have been used, containing
part of, total, or aggregation of LANs with 128, 256 or 512
host per subnet, accordingly.

In Figure 4, the evolution of infection density of arbi-
trary selected subnets is compared to the global infection
density evolution of the whole simulated setup. During the
outbreak phase of the worm infection, locally probed estima-
tions of the infection are not following accurately the global
infection numbers. In the case of subnets with size 128 or
256 probes (that is, probing was accomplished within a sole
LAN), there appears an average error of 40% in the estima-
tion of the global infection density. When a critical size of 512
hosts is considered, involving the aggregation of 2 LANs in
a probing subnet, the corresponding estimation error is of the
order of 15%. On the other hand, near the saturation phase
of infection, we observe that the behavior of the worm pro-
pagation in different size subnets coincides. This confirms
the theoretical result stated earlier in this section, i.e., that
near the saturation local preference worms behave the same
as random scanning worms.
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Fig. 5 Number of infected hosts in total simulated setup

In the second part of simulation experiments, a constant
rate of one per thousand of the total number of hosts is
assumed to be immunized in each time step, accounting for
preventive countermeasures in the setup. In order to capture
the human initiated healing of infected hosts an additional
disinfection action is performed in each time step, which re-
turns a number of infected hosts to the susceptible state. This
number of healed hosts per time step is proportional (one
per thousand) to the square of infected hosts within a LAN
cluster, as long as the number of infected hosts in the LAN
is kept low, but stabilizes later at 0.25% when the number of
infected hosts overpasses one half of the total available hosts
in the LAN.

Two distinct cases of address scanning strategies have
been simulated: In the first case, the generated addresses have
a uniform (random) distribution, disregarding any informa-
tion about locality of LAN clusters. Each infection probe can
target any other host in the entire simulated setup with equal
probability. In the second case, the worm exhibits a local
preference in the probe addresses it generates. Following the
characteristics of a Blaster-like worm, 40% of the generated
addresses target other hosts in the same LAN cluster, while
the remaining 60% target hosts in random LANSs.

In both cases, the evolution of the number of infected
hosts through time is being tracked, in order to compare and
validate the model-theoretically predicted behavior of worm
propagation.

As depicted in simulation results of Fig. 5, the outbreak of
infection is faster with the local preference scanning strategy
and the peak value of infected hosts is higher compared to
the relevant results of random scanning. The two simulation
outcomes are with strict accordance to the model-theoretical
predictions presented in Sect. 4. Moreover, it is clearly shown
in Fig. 5 that the immunization constant rate procedure is the
dominant characteristic after reaching peak values of infected
hosts in both uniform and local preference cases. This leads
to a similar ending phase of infection evolution.

6 Conclusions

The design of techniques and strategies for an effective,
affordable and implementable resistance against future
worms will be a research challenge in the years to come.
Given the apparent inadequacy of existing proactive strate-
gies to deal with advanced, fast spreading worms, monitoring
and intrusion detection can be seen as another layer of pro-
tection, complementary to preventive and reactive security
(e.g., firewall and disinfection technologies). IDS techno-
logy could take advantage of the knowledge gained by recent
worm propagation models that attempt to describe how a
worm is propagated, by using mathematical equations.

This work elaborated on a recent worm propagation
model [1], where it was shown that there is a representa-
tive neighborhood of hosts of appropriate size over which
the evolution of worm population follows correctly the evo-
lution of the population in the Internet. More specifically, in
this work a loss term is added to describe the reduction of
the worm population, caused by preventive and/or reactive
countermeasures. Furthermore, we explain analytically and
then demonstrate, with simulation results, the fact that local
preference worms spread faster and result in greater damage
compared with random scanning worms. This work can be
used to better describe the real-world behavior of local pre-
ference scanning worms in the Internet.

Finally, a theoretical framework for addressing scalability
of worm propagation in the Internet was proposed via gra-
dient models. More specifically it was shown that a hierarchy
of critical network sizes is present during local preference
worm propagation. In general, it is stated that gradient
models are a very valuable tool in order to address scala-
bility. In order to understand this, note that the characte-
ristics of scalability depend on the characteristics of worm
propagation strategies and on the network infrastructure. On
the other hand we show that those characteristics determine
the expression of the corresponding gradient term. As a
result, we believe that correct estimation of the gradient coef-
ficient for a scanning worm could be used to predict its scaled
propagation.
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